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Analytical approach to the drift of the tips of spiral waves in the complex
Ginzburg-Landau equation
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In this paper, we investigate the motion of spiral waves in the complex Ginzburg-Landau equation~CGLE!
analytically and numerically. We find that the tip of the spiral wave drifts primarily in the direction of the
electric field and there is a smaller component of the drift that is perpendicular to the field when a uniform field
is applied to the system. The velocity of the tip is uniform and its component along the electric field is equal
to the strength of the field. When the CGLE system is driven by white noise, a diffusion law for the vortex core
of the spiral wave is derived at long time explicitly. The diffusion constant is found to beD5T/C2, in which
T is the noise strength andC is the core asymptotic factor of the spiral wave. When the external force is a
simple oscillation we find that the tip of the spiral wave drifts if the frequency of the external force is the same
as that of the system. Our analytical results are verified using numerical simulations.
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I. INTRODUCTION

Spiral waves are significant patterns that are ubiquitou
many systems of physics, chemistry, materials, and biol
@1#. They occur in the reaction-diffusion media@2#, certain
regions of fluid flows@3#, the CO oxidation on platinum
surfaces@4#, the aggregating slime-mold cell@5#, and the
contraction of heart muscles@6#. Meandering and drifting
spirals have been observed experimentally, for instance
the Belousov-Zhabotinsky~BZ! reaction@7–10#, the oxida-
tion of carbon monoxide on platinum surfaces@11#, and dur-
ing fibrillations in cardiac tissue@12#. The center of the spira
wave is observed to drift in the BZ reaction when a unifo
electric field is applied in the reaction dish@13#. In order to
have an insight into the motion of spiral waves, the drift
spiral waves has been studied theoretically in many differ
systems@14–21#. However, to the best of our knowledg
almost all published studies are based on numerical sim
tions, to date, there have been no analytical investigatio
Due to this lack of analytical study, some observations
spiral waves, such as the component of the spiral wave
that is perpendicular to the field when an electric field
applied to an oscillatory reaction-diffusion system@13#, have
not been fully understood.

Recently, a velocity formula for the spiral wave in
reaction-diffusion system was derived in a paper under
nondeformation approximation of the spiral wave core@22#.
We develop this study for the complex Ginzburg-Land
equation~CGLE! in this paper, which describes a vast va
ety of phenomena from nonlinear chemical wave to seco
order phase transitions, from superconductivity, superfluid
and Bose-Einstein condensation to liquid crystals@3,23–26#.
In the oscillatory regime, sufficiently close to the onset
oscillation, the dynamics of the BZ reaction are mode
by the CGLE@24#. In this paper, the motion of spiral wave
is investigated in the presence of an external force, noise,
time-dependent periodic background. After deriving
analytical expression for the velocity for each case we co
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pare our analytical results with corresponding numeri
simulations.

This paper is organized as follows: An analytical expre
sion for the velocity of the spiral tip of CGLE is derived fo
a general external perturbation in Sec. II. When a unifo
external vector field~such as an electric field! is applied, the
motion of the spiral tip is investigated analytically in Sec. I
The corresponding numerical simulation is also executed
examine our analytical results. We find that the tip of t
spiral wave drifts primarily in the direction of the electr
field, but there is also a small component of the drift that
perpendicular to the field, which agrees well with observ
tions @13#. The velocity of the tip of the spiral wave is equ
to the strength of the external field and the motion of the
is along a straight line with uniform velocity. In Sec. IV
using the analytical results of Sec. II, the behavior of the
of the spiral wave is explored when there is a weak addit
broadband noise in the CGLE system and a diffusion law
the tip of the spiral wave at long times is derived analytica
It is found that the diffusion constant is proportional to t
noise strength and inversely proportional to the square of
core asymptotic factor of the spiral wave. In Sec. V, t
motion of the tip of a spiral wave is studied in the case o
periodic force being applied in the CGLE system. We fi
that the tip of the spiral wave drifts if the frequency of th
driving force is equal to that of the CGLE system. Finally,
summary and a closing remark are given in Sec. VI.

II. VELOCITY OF THE SPIRAL WAVE TIP

It is well known that the usual CGLE is given by@23#

] tA5A1~11 ib !¹2A2~11 ic !uAu2A, ~1!

whereA[A11 iA2 is a complex function of timet and space
(x,y), the real parametersb and c characterize linear and
nonlinear dispersion and¹2 stands for the Laplacian opera
tor. Spiral waves are observed ifbÞc. A single-armed spiral
wave solution to Eq.~1! is given by@27#
©2003 The American Physical Society14-1
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As~x,t !5F~r !exp$ i @su1c~r !2vt#%, ~2!

in which r 5ux2x0u andu is the polar angle measured fro
the vortex core centered atx0, ands561 is the topological
charge of the spiral wave. Far away from the core solut
~2! approaches a plane wave withF.A12k0

2 and c(r )
.k0r , where the asymptotic wave numberk0 depends on the
parametersb andc. The real functionsF(r ) andc(r ) have
the following asymptotic behavior:F.c8.r as r→0.

When an arbitrary external perturbation influences
system, Eq.~1! becomes as follows:

] tA5A1~11 ib !¹2A2~11 ic !uAu2A1G. ~3!

The external perturbationG[a1 ib may or may not be de
pendent onA. For example, when an electric field is prese
one hasG5E•“A, whereE stands for the vector paramete
of the electric field@14#. Assuming thatG induces a drift of
the spiral wave tip with velocityV(t)5exVx(t)1eyVy(t), ex
and ey are two unit vectors along thex axis andy axis,
respectively, we can rewrite Eq.~3! in the comoving coodi-
nate system as

] tA5A1~11 ib !¹82A2~11 ic !uAu2A1V•“8A1G,
~4!

where“8 is the gradient operator in the comoving coordina
system.

We assume that the deformation of the spiral wave in
core is small enough to be neglected for smallG. Then Eq.
~1! holds true in the comoving coordinate system. From E
~1! and ~4! we have

Vx]x8A11Vy]y8A15a, Vx]x8A21Vy]y8A25b.

Since“85“ for homogeneous motion, the velocityV can be
expressed as follows:

Vx5
a]yA22b]yA1

]xA1]yA22]xA2]yA1
,

Vy52
a]xA22b]xA1

]xA1]yA22]xA2]yA1
. ~5!

Making use of the spiral wave solution~1! and its asymptotic
behavior, the velocity of the tip of the spiral wave can
determined completely. A similar formula has been deriv
in the modified FitzHugh-Nagumo model and the cor
sponding drift of the spiral wave studied in Ref.@22#.

Using the single-armed spiral wave solution~2! in the
limit r→0, F.c8;r , we can write the velocity of the tip o
the spiral wave from Eq.~5! in the form

Vx5
1

2C
@a cos~vt !2b sin~vt !#,

Vy5
1

2C
@2a sin~vt !1b cos~vt !#, ~6!
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where C is the constant in the limitF(r→0)5Cr, which
represents the rate of change of the spiral wave amplit
with respect to the distance from the vortex core. We calC
the core asymptotic factor of the spiral wave.

III. MOTION OF SPIRAL WAVES IN THE PRESENCE
OF UNIFORM ELECTRIC FIELDS

Following Ref. @14#, a reaction-diffusion system applie
in a uniform external field is modeled by the CGLE with a
additional term:

] tA5A1~11 ib !¹2A2~11 ic !uAu2A1E•“A. ~7!

The external field is chosen in the formEÄex(g1 id) for
simplicity, whereg andd are two real constants. The exte
nal perturbation becomes

G5~g]xA12d]xA2!1 i ~g]xA21d]xA1!. ~8!

Using Eqs.~6! and ~8!, we derive the drift velocity of the
spiral wave as follows:

Vx5g2d
~]xA1!21~]yA2!2

]xA1]yA22]xA2]yA1
,

Vy5d
~]xA1!21~]yA2!2

]xA1]yA22]xA2]yA1
. ~9!

Note that the above formula is obtained under the condit
that there is no deformation of the spiral wave. From t
asymptotic behavior of solution~2! underr→0, we can de-
rive the velocity of the spiral wave as follows:

Vx5g1
d

2s
$11cos 2@c~0!2vt#%,

Vy5
d

2s
@11cos 2~c~0!2vt !#. ~10!

We see that the velocity is proportional to the parameters
the external field and depends on the terms cos 2(c(0)2vt).

If the external field is electric, then all the components
E are real@14#. It is easy to see that the velocity is only alon
the x axis and the magnitude of the velocity is equal to t
magnitude of the electric field, i.e.,Vx5g and Vy50. We
simulated Eq.~7! numerically with the Runge-Kutta algo
rithms. Calculations were done in a two-dimensional 3
3356 array with a time stepht50.05. Von Neumann’s ‘‘no
flux’’ boundary condition was imposed on the boundary
the medium. In the computation we used the following p
rameters:g50.4 andd50 numerically. We used the value
b521.0 andc50.5. The electric field was applied fornt
5800 after the spiral wave had formed. Our numerical sim
lation showed that the tip of the spiral wave drifts primar
in the direction of the electric field. Figure 1 gives the orb
of the tip of the spiral wave. We see that there is a sma
component of the drift that is perpendicular to the elect
field. It can be seen that the rate of thex-component drift to
they-component drift is about 4.4%. The perpendicular d
4-2
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of the spiral wave tip has been observed in the BZ sp
wave @13#, but was not confirmed in previous theoretic
investigation of the reaction-diffusion system in the oscil
tory regime@14#.

We simulated Eq.~7! with b521.0,c50.5, andd50 for
g50.1, 0.3, 0.4 and applied the electric field fornt5800
after a single-armed spiral wave had formed. Figure 2 sh
the x-component displacement of the tip of the spiral wa
vs time. It can be seen that the relationship between
displacement and time is linear. This means that the velo
of the spiral tip is uniform for a fixed strength of the electr
field. The slope of the straight line is the velocity of the t
and increases when the strength of the electric field is

FIG. 1. When a uniform electric field is applied, the trace of t
spiral wave tip is a straight line. This figure is plotted withb
521.0, c50.5, andg50.4. The tip of the spiral wave drifts pri
marily in the direction of the electric field, i.e., thex axis. There is
also a smaller component of the drift that is perpendicular to
field. The ratio of thex-component drift to they-component drift is
about 4.4%.

FIG. 2. Thex-component displacement of the spiral wave
varies with time when the uniform electric fields with strengthg
50.1, 0.3, 0.4 are applied, respectively. We plot this graph witb
521.0 andc50.5. The correspondingx-component velocities are
equal to the strength of the electric field, i.e., 0.1, 0.3, 0.4.
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creased. We calculated the slopes of the straight lines
20.1,20.3,20.4 and found that the velocity of the spiral ti
was equal to the electric field strength.

Figure 3 demonstrates the relationship between
x-component displacement of the spiral wave tip and
strength of the electric field for the fixed timent5800. The
strength of the electric field ranges from 0.02 to 0.4 with
step of 0.02. The constants in~7! were set atb521.0, c
50.5, andd50. We see that the relationship between t
x-component displacement and the electric field strengt
linear. In other words, thex-component displacement is pro
portional to the strength of the electric field. Since the velo
ity of the spiral wave tip is uniform, which has been show
in Fig. 2, it is also proportional to the strength of the elect
field. This agrees with the conclusions obtained from the
paragraph. The slope of the straight line in Fig. 3 is 80
Using the definition of velocity, we can also conclude th
the x-component velocity of the spiral wave tip is equal
the strength of the electric field.

IV. RESPONSE OF SPIRAL WAVES TO ADDITIVE NOISE

External noise perturbations often appear in spiral wa
experiments. Aransonet al. investigated spiral motion in a
noisy CGLE using a linear response assumption@16#. They
showed that a spiral core driven by white noise has a fin
mobility and performs Brownian motion. In this section w
analytically investigate the motion of the tip of spiral wav
in the CGLE. The CGLE with weak additive broadban
noiseh can be expressed as

] tA5A1~11 ib !¹2A2~11 ic !uAu2A1h,

in which h is generally a complex function of space coord
nate and time.

e

FIG. 3. Thex-component displacement of the spiral wave
depends on the strength of the electric field for a fixed time ofnt
5800. In this figure, the constantsb andc have the same values a
in Figs. 1 and 2. The strength of the electric field ranges from 0
to 0.4 with a step of 0.02. We determine the slope of the stra
line to be 800. Usingnt5800, we derive thex-component velocity
to be equal to the strength of the electric field.
4-3
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We consider the special case whereh(x,t) takes the form
of weak, uncorrelated white noise with zero mean and c
elators,

^hm~x,t !hn~x8,t8!&52Tdmnd~x2x8!d~ t2t8!, ~11!

wherem andn specify real and imaginary parts ofh and T
characterizes the noise strength. Using the spiral wave s
tion ~2! and its asymptotic behavior, we derive a veloc
expression for the tip of spiral waves in the form

Vx5
1

2C
@hmcos~vt !2hnsin~vt !#,

Vy5
1

2C
@2hmsin~vt !1hncos~vt !#, ~12!

wherev is the angular frequency of the unperturbed sp
wave. Becausehm andhn are random, it can be seen that t
spiral wave performs Brownian motion.

From the velocity~12!, we determine the coordinates o
the spiral wave tip as follows:

x5x~ t50!1
1

2CE0

t

@hmcos~vt!2hnsin~vt!#dt,

y5y~ t50!1
1

2CE0

t

@2hmsin~vt!1hncos~vt!#dt.

Using the white noise correlators~11!, we obtain a diffusion
law for the vortex core at long times:

^r 2&5^@x2x~ t50!#2&1^@y2y~ t50!#2&5Dt. ~13!

In Eq. ~13!, the diffusion constant isD5T/C2, whereT is
the noise strength in Eq.~11! and C is the core asymptotic
factor that is defined in terms of the asymptotic behavior
Sec. II. It can be seen that our analytical result~13! is exactly
the same as the conclusion in Ref.@16#, but we determine the
diffusion constant completely analytically.

V. MOTION OF SPIRAL WAVES WITH A TIME-
DEPENDENT PERIODIC EXTERNAL FORCE

When a time-dependent periodic external force is app
to the CGLE system, its dynamics are governed by the
lowing equation:

] tA5A1~11 ib !¹2A2~11 ic !uAu2A1h
0
exp~2 iVt !,

~14!

whereh0 is the amplitude of the periodic force andV stands
for its frequency. Using the general expression for the p
turbation drift velocity, Eq.~5!, we derive the velocity of the
spiral wave tip driven by the time-dependent periodic ext
nal force as
01621
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Vx5
h

0

2C
cos@~v2V!t2c~0!#,

Vy5
sh0

2C
sin@~v2V!t2c~0!#, ~15!

in which v is the angular frequency of the unperturbed spi
wave andC is the core asymptotic factor defined in Sec.
From Eq.~15!, we see thatVy is dependent on the topolog
cal charges of the spiral wave. Generally, the tip of a spir
wave oscillates in both thex and y directions, in which the
oscillatory frequency is equal tov2V. Equations~15! show
that the amplitudes of the tip in both thex andy directions
are the same. Therefore, the spiral wave tip drifts alon
circle with radius

R5
h

0

2C~v2V!
,

in which the frequency of the time-dependent external fo
must not be equal to that of the unperturbed spiral wave.
find that the less the difference of the frequency, the lar
the radius of the circle.

If the frequency of the time-dependent external force
equal to that of the unperturbed spiral wave in the CGL
i.e., V5v, Eq. ~15! becomes

Vx5
h0

2C
cosc~0!, Vy52

sh0

2C
sinc~0!. ~16!

We find that the tip of the spiral wave drifts along a straig
line with uniform velocity when a time-dependent period
force is applied to the system. The direction of the strai
line is defined by ther→0 asymptotic behavior of the phas
function c(r ) in the general expression of the spiral wa
solution~2!. It is also dependent on the topological charge

FIG. 4. When the frequency of an external periodic force a
plied to the system is equal to that of the unperturbed spiral wa
the tip of the spiral wave drifts accordingly. In this figure,b50,
c50.7, andh050.008. The unperturbed single-armed spiral wa
is formed by making use oft51200. Then, the external force i
applied and remains fornt59000. The curve shows the trajector
of the tip of the spiral wave during the application of the tim
dependent periodical external force.
4-4
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the spiral wave. We see that the total velocity is proportio
to the amplitude of the external force and inversely prop
tional to the core asymptotic factor defined in Sec. II.

In order to verify our analytical result, we simulate E
~14! numerically withb50 andc50.7 in a 3563356 array.
The time step is 0.05. The amplitude of the force,h0, is
taken as 0.008. Using the approximation formula@27#,

v5c~12k2!, k.2c21exp~2p/2ucu!

for b50 anducu!1, we obtain the approximate frequency
the unperturbed spiral wave asv'0.683 938 2. The fre-
quency of the time-dependent periodic external force is
nally determined to beV50.679 138 2 by means of a nu
merical test. After a single-armed spiral wave is formed,
external force is applied fornt59000. Figure 4 shows the
numerical result of the trace of the drift of the spiral wave
in the case of the time-dependent periodic external force
frequencyV. It can be seen that, indeed, the spiral wave
drifts when the time-dependent periodic external force re
nates with the CGLE system.

VI. CONCLUSION AND REMARKS

In this paper, we have investigated the motion of the tip
spiral waves in the CGLE analytically. We found that the
of the spiral waves drifts primarily in the direction of th
electric field with a small component of the drift perpendic
lar to the field, when a uniform electric field is applied to t
n

J
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,

d

v

rt

e
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system. This agrees well with experimental observatio
@13#. The spiral wave tip velocity in the direction of th
electric field was equal to the strength of the field. The v
locity that is perpendicular to the field is also uniform.
diffusion law is obtained if weak additive broadband noi
exists in the system. The diffusion constant was determi
to be proportional to the noise strength and inversely prop
tional to the core asymptotic factor of the spiral wave. Wh
a periodic, time-dependent external force with frequen
equal to that of the unperturbed spiral wave is applied to
CGLE system, the drift of the spiral wave appears.

It must be pointed out that in our analytical study, t
deformation of the tip of the spiral wave is neglected and a
effects caused by the deformation of the spiral wave are
included in this paper. The smaller component of the d
that is perpendicular to the uniform electric field may be d
to deformations of the spiral wave.
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